The summer of 2007 was historically dry in Alabama with rainfall well below normal (National Climate Data Center 2007. [http://www.ncdc.noaa.gov/oa/ncdc.html]). On 9, 11, and 12 Sept 2007, 7 P. glutinosus were found under flat stones in the ripples of a first order stream. At this time epigean flow had been reduced to isolated pools leaving ripples and runs dry. This stream is located in a mixed hardwood forest of secondary growth in the Talladega National Forest (WGS 84, 33.5469°N, 85.8224°W). Searches of cover objects in the streambed were performed only during daylight hours. As the microhabitat under logs and in leaf litter on the surrounding hillsides are extremely dry it is thought that these individuals were seeking refuge from desiccation under moist rocks in the streambed. An additional individual was found drowned in an isolated stream pool that was \(\sim 7 \) cm deep. The presence of this drowned individual may attest to the terrestriality of these animals and how extreme the conditions were to force this species to move to such a perilous environment.

Submitted by CLIFFORD J. WEBB (e-mail: canonegro@yahoo.com), and SARA E. VIERNUM (e-mail: sviernum@yahoo.com), Department of Biology, Jacksonville State University, Jacksonville, Alabama 36265, USA.

PSEUDOTRITON MONTANUS MONTANUS (Eastern Mud Salamander). HABITAT USE. Habitat use by adult Pseudotriton montanus has been reported as mesic habitats along rivers or swamps (Petranka 1998. Salamanders of the United States and Canada. Smithsonian Press, Washington, D.C. 587 pp.). As part of a herpetofaunal survey of Hobcaw Barony in Georgetown County, South Carolina, I set up a pias-shaped drift fence array in Longleaf Pine (Pinus palustris) / Turkey Oak (Quercus laevis) habitat at WGS 84 33.30682°N, 79.26372°W. The drift fence array was made of silt fencing with each arm ca. 16.5 m in length and four funnel traps along each of the four arms. On 10 May 2007 two adult P. m. montanus were found in the funnel traps. The previous evening 39.6 mm of rain fell at nearby Georgetown, 7.5 km NNW of Hobcaw Barony (www.wunderground.com/weatherstation/WXDailyHistory.asp) and there was evidence of precipitation at the trapping site. This is the first report that I am aware of P. m. montanus using a xeric habitat. One of the specimens (JDC-2137) will be deposited in the Charleston Museum, Charleston, South Carolina, USA.

I thank the Belle W. Baruch Foundation for funding the survey access to the study site.

Submitted by JEFFREY D. CAMPER, Department of Biology, Francis Marion University, Florence, South Carolina 29506, USA; e-mail: jcampte@fmarion.edu.

RYHACOTRITON KEZERI (Columbia Torrent Salamander). LARVAL DIET. Bury and Martin (1967. Copeia 1967:487) reported on the stomach contents of 36 post-metamorphic R. variegatus from northwestern California, the only diet study for any species of Rhyacotriton. Data on larval diet are lacking entirely. Herein, we report on larval diet for R. kezeri.

TLH made one observation in a small (< 2 m wide), 2nd-order (Strahler 1952. Geol. Soc. Am. Bull. 63:923–938) tributary of Minnie Creek, off the South Fork Willapa River, Willapa Hills, southwestern Washington State, USA (WGS 84, 46.580°N, 123.726°W, elev. 224 m). This site was in 2nd-growth forest managed for timber by the Washington Department of Natural Resources (WDNR). Western Hemlock (Tsuga heterophylla) with interspersed Western Red Cedar (Thuja plicata) dominate the overstory; Sword Fern (Polystichum munitum) is prominent in the understory.

At 1549 h on 9 July 2007, during measurement of a larval R. kezeri (31 mm SVL, 18 mm tail) in a clear polyethylene bag partly filled with water, TLH observed the animal regurgitate two Neoedipron sawfly larvae. The larvae were immediately preserved in 95% ethanol for subsequent examination. The R. kezeri had been found in sand beneath a 10 cm cobble in a riffle in the non-fish-bearing portion of the stream (126 m above the point where the last fish was recorded).

Both sawfly larvae had a narrow (1 mm wide) pale mid-dorsal stripe and one dark stripe (2 mm wide) running dorsolaterally the length of each side, typical of the Hemlock Sawfly, N. tsugae (Hard et al. 1976. Hemlock Sawfly. USDA Forest Service, Forest Insect and Disease Leaflet. Online at: http://www.fs.fed.us/r6/nr/fid/fids/fid131.pdf). The relatively intact larger of the two larvae (ca. 20 mm total length [TL]), was pale green, had a black head capsule with a lighter dorsal patch, and matched the size of the last larval (= pre-pupal) instar of N. tsugae (Hard et al. 1976, op. cit.). The smaller larva (15 mm TL), consisted of only a head and outer skin, but we could not distinguish whether this was from digestion or simply represented a previously shed larval skin consumed by the salamander.

At 1056 h on 11 July 2007, DEM made a second observation while sampling at the same site. A larval R. kezeri (30 mm SVL, 16 mm tail), found beneath a cobble in a riffle 282 m upstream from the first observation, had a Neodiprion larva (ca. 10 mm TL) sticking out of its mouth. As previously, the larva was immediately preserved. This larva was similar to the previous two, but the stripping was less pronounced, and the head capsule was mostly white with black shading.

Sawflies are hymenopterans known for their phytophagous lar-vae (Smith 1993. In Wagner and Raffa [eds.], Sawfly Life History and Adaptations to Woody Plants, pp. 3–32. Academic Press, Inc., San Diego, California). Members of Neodiprion feed exclusively on conifers, tend toward monophagy (feed on but one host spe-cies), and several species are well known for eruptions in larval numbers that can defoliate large areas (Haack and Mattson 1993. In Wagner and Raffa [eds.], op. cit., pp. 503–545). Given Neodiprion life history and that mature N. tsugae larvae are active from late June through August (Hard et al. 1976, op. cit.), opportunity exists for sawfly larvae to serve as an important seasonal food source for forest-dwelling species. Preupal migration is not well understood, but if N. tsugae larvae fall from the canopy and initiate puation, typically in August, either terrestrially or in low shrubs (Hard et al. 1976, op. cit.), those that drop into aquatic habitats may become prey for torrent salamanders.

Fieldwork was supported by the Forests and Fish Adaptive Management Program, Washington Department of Fish and Wildlife (WDFW). WDNR facilitated work on their land. Studies were done under a programmatic WDFW handling permit provided to employees in the course of their work. David R. Smith, research entomologist (retired, Systematic Entomology Labo-